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Abstract

In the framework of a study of the liquid-gas transition in nuclear matter, which main
purpose was to investigate the impact of different Skyrme interactions on density, tem-
perature and pressure at the critical point, we were faced with the calculation of the
Virial coefficients. In this report, we provide relations, sum rules, analytical formulas and
numerical values for such coefficients.
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1 Introduction
Using the finite-temperature Hartree-Fock theory, as presented by Fetter and Walecka [1], it
is possible to derive an equation of state for a Fermi gas of nucleons interacting through the
Skyrme [2] force. Details of the calculation are provided in an appendix of Ref. [3], but the
resulting equation is quite simple:

P = −a0ρ
2 + a3(1 + σ)ρ2+σ +

(
1− 3

2

ρ

m∗
dm∗

dρ

)
Pid(m

∗), (1)

where Pid(m
∗) is the pressure of a Fermi ideal gas made of particles with mass m∗ at the

temperature T . It can be obtained via the Virial expansion:

Pid = kBT
∞∑
n=1

Bnρ
n, (2)

where Bn are the so-called Virial coefficients. One has

Pid

kBT
=

g

λ3
f5/2(z), (3)

g being the spin-isospin degeneracy factor and

λ =

(
2πℏ2

m∗kBT

)1/2

(4)

the thermal de Broglie wavelength. The f5/2(z) Fermi function reads

f5/2(z) =
4√
π

∫ ∞

0

x2 ln
(
1 + ze−x2

)
dx (5)

and can be expanded as

f5/2(z) =
∞∑
n=1

(−1)n+1 zn

n5/2
. (6)

The density of the Fermi ideal gas reads

ρ =
g

λ3
f3/2(z) (7)

with
f3/2(z) = z

∂

∂z
f5/2(z) (8)

satisfying the expansion

f3/2(z) =
∞∑
n=1

(−1)n+1 zn

n3/2
. (9)

Combining Egs. (2) and (3), one gets

g

λ3

∞∑
n=1

(−1)n+1 zn

n5/2
=

∞∑
n=1

Bn

(
∞∑
k=1

(−1)k+1 zk

k3/2

)n

(10)
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2 Direct “brute force” calculation
Equation (10) is equivalent to

g

λ3

∞∑
n=1

(−1)n+1 zn

n5/2
= B1

g

λ3

∞∑
n=1

(−1)n+1 zn

n3/2

+B2
g2

λ6

(
∞∑
n=1

(−1)n+1 zn

n3/2

)2

+ · · · (11)

and thus
∞∑
n=1

(−1)n+1 zn

n5/2
= B1

∞∑
m=1

(−1)m+1 zm

m3/2

+B2
g

λ3

∞∑
m,n≥1

(−1)m+n+2 zm+n

(mn)3/2

+B3
g2

λ6

∞∑
m,n,p≥1

(−1)m+n+p+3 zm+n+p

(mnp)3/2

+B4
g3

λ9

∞∑
m,n,p,q≥1

(−1)m+n+p+q+4 zm+n+p+q

(mnpq)3/2

+B5
g4

λ12

∞∑
m,n,p,q,r≥1

(−1)m+n+p+q+r+5 zm+n+p+q+r

(mnpqr)3/2

+B6
g5

λ15

∞∑
m,n,p,q≥1

(−1)m+n+p+q+r+s+6 zm+n+p+q+r+s

(mnpqrs)3/2

+B7
g6

λ18

∞∑
m,n,p,q,r,s,t≥1

(−1)m+n+p+q+r+s+t+7 zm+n+p+q+r+s+t

(mnpqrst)3/2

+ · · · . (12)

Identification of the powers of z yields the Virial Bn coefficients.

For n = 1:
1

15/2
= B1

1

13/2
⇒ B1 = 1. (13)

For n = 2:
− 1

25/2
= − B1

23/2
+B2

g

λ3
.
1

13/2
⇒ B2 =

1

25/2

(
λ3

g

)
. (14)

For n = 3:

1

35/2
=

B1

33/2
+B2

g

λ3

(
− 2

23/2

)
+B3

g2

λ6

1

13/2
⇒ B3 =

(
1

8
− 2

9
√
3

)(
λ3

g

)2

. (15)
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For n = 4:

B4 =

(
3
√
6 + 5

√
3− 16

32
√
6

)(
λ3

g

)3

. (16)

For n = 5:

B5 =

(
5400

√
30 + 7925

√
15− 25200

√
5− 6912

√
3

43200
√
15

)(
λ3

g2

)4

=

(
317

1728
+

√
2

8
− 7

√
3

36
− 4

√
5

125

)(
λ3

g

)4

(17)

For n = 6:

B6 =

(
23

128
+

2081
√
2

6912
−

√
3

72
− 91

√
6

432
−

√
10

20

)(
λ3

g

)5

. (18)

For n = 7:

B7 =

(
5957

6912
+

9
√
2

64
− 1721

√
3

3888
− 4

√
5

25
−

√
6

12
− 6

√
7

343

)(
λ3

g

)6

. (19)

Order n Virial coefficient Bn

(
g
λ3

)n−1 Numerical value

1 1 1

2
1

25/2
0.176777

3
1

8
− 2

9
√
3

-0.00330006

4
3
√
6 + 5

√
3− 16

32
√
6

0.000111289

5
317

1728
+

√
2

8
−

7
√
3

36
−

4
√
5

125
-0.0481161

6
23

128
+

2081
√
2

6912
−

√
3

72
−

91
√
6

432
−

√
10

20
-0.092685

7
5957

6912
+

9
√
2

64
−

1721
√
3

3888
−

4
√
5

25
−

√
6

12
−

6
√
7

343
-0.31415
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3 Analytical formula
Setting, keeping Kilpatrick’s notation

pj =
g

λ3

(−1)j+1

j3/2
, (20)

we have the relation
∞∑
j=1

pj
j
zj =

∞∑
k=1

Bk

(
∞∑
j=1

pjz
j

)k

(21)

and therefore

pn =
n

2πi

∮
1

zn+1

∞∑
k=1

Bk

[
∞∑
j=1

pjz
j

]k
dz (22)

yielding

pn = n

n∑
i=1

i!Bi

∑
{rs}

n∏
s=1

prss
rs!

(23)

with
n∑

s=1

rs = i (24)

and
n∑

s=1

srs = n. (25)

For instance, in the case n = 3, one has
p1 = p1B1
1
2
p2 = p2B1 + p21B2

1
3
p3 = p3B1 + 2p2p1B2 + p31B3.

(26)

In order to express the Bk coefficients in terms of the pj, let us write

∞∑
j=1

pj
j
zj =

∞∑
k=1

Bkρ
k (27)

Integrating over ρ after multiplication by ρ−n+1 yields

Bn =
1

2πi

∮ ∞∑
j=1

pj
j
zj × 1

ρn−1
dρ. (28)

Using

ρ =
∞∑
j=1

pjz
j, (29)
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one gets

Bn =
1

2πi

∮ ( ∞∑
j=1

pj
j
zj

)(
∞∑
k=1

pkz
k

)−n−1( ∞∑
l=1

lplz
l−1

)
dz. (30)

Thus, Bn is the coefficient of zn in the expansion of

Bn =
1

2πi

∮
(p1z)

−n−1

(
1 +

∞∑
k=2

pk
p1

zk−1

)−n−1( ∞∑
j=1

pj
j
zj

)(
∞∑
l=1

lplz
l−1

)
dz. (31)

and Bn is the coefficient of zn in the expansion of

p−n−1
1

(
1 +

∞∑
k=2

pk
p1

zk−1

)−n−1( ∞∑
j=1

pj
j
zj

)(
∞∑
l=1

lplz
l−1

)
(32)

Expanding the different terms, one gets

Bn =
∑
i=0

∑
j=1

∑
k=1

(−1)i(n+ i)!

n!pn+1+i
1

kpjpk
j

∑
{rs}

n∏
s=2

prss
rs!

(33)

with
n∑

s=2

rs = i (34)

and
n∑

s=2

srs = n+ i+ 1− j − k. (35)

As shown by Kilpatrick [4, 5], one can set k′
s = rs for s ≥ 2, k′′

s = δsj, k′′′
s = δsk and ks =

k′
s + k′′

s + k′′′
s . One has subsequently

n∑
s=2

ks = i+ 2− k′′
1 − k′′′

1 (36)

and
n∑

s=2

sks = n+ i+ 1− k′′
1 − k′′′

1 . (37)

Concerning the factor in p1, the largest possible value of i is n− 1, since no larger integer can
divide n − 1 + i into i parts, each one having size larger or equal than 2. For that reason,
Kilpatrick suggested to write p2n−2

1 in the denominator and the remaining term in the form pk11 .
This defines k1, and therefore k′

1. One gets

−n− 1− i+ k′′
1 + k′′′

1 = k1 − (2n− 2) (38)

i. e. i = n− 3− k′
1. The two constraints on the summation thus read∑

s=1

ks = n− 1
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and ∑
s=1

sks = 2n− 2

and

Bn =
∑
{ks}

(−1)n−1−k1(n− 1)(2n− k1 − 3)!

n!p2n−2
1

pk11

n∏
s=2

pkss
ks!

.

Kilpatrick pointed out at the end of its paper that Bn is in fact the coefficient of z2n in the
expansion of

1

n

∞∑
j=1

(
pjz

j
)−n+1

. (39)

Such a property can probably be useful in order to find the expression of Bn, using Faà di
Bruno and multinomial coefficients. Replacing pj by its value (20) in our specific case, one gets

Bn =

(
λ3

g

)n−1
n− 1

n!

∑
{ks}

(2n− k1 − 3)!
(−1)k1∏n

s=2 ks!s
3ks/2

.

For instance, the first five coefficients are

B1 = 1
B2 = −p2

p21

B3 =
1
p41

(
−2

3
p3p1 + p22

)
B4 =

1
p61

(
−3

4
p4p

2
1 + 3p3p2p1 − 5

2
p31
)

B5 =
1
p81

(
−4

5
p5p

3
1 + 4p4p2p

2
1 + 2p23p

2
1 − 12p3p

2
2p1 + 7p42

) . (40)

Note that
n∏

s=2

ks! (41)

is G(n+ 2) where G(z) represents the Barnes G function

G(n) =
n∏

k=1

Γ(k). (42)

4 Sum rules
Equation (23) becomes

n∑
i=1

(−1)i−1i!
( g

λ3

)i−1

Bi

∑
{rs}

1∏n
s=1 [rs!× s3rs/2]

=
1

n5/2
(43)

with
n∑

s=1

rs = i and
n∑

s=1

srs = n. (44)
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Equation (43) constitutes a sum rule which can be useful to check numerical calculations of the
Bn coefficients. It can also be used to express Bn in terms of the Bi, i ≤ n− 1 as:

Bn =
(−1)n−1

n!

(
λ3

g

)n−1

×

∑
{q(n)

s }

1∏n
s=1

[
q
(n)
s × s3q

(n)
s /2

]
−1

×

 1

n5/2
−

n−1∑
i=1

(−1)i−1i!
( g

λ3

)i−1

Bi

∑
{q(i)s }

1∏n
s=1

[
q
(i)
s × s3q

(i)
s /2
]
 , (45)

where
n∑

s=1

q(i)s = i (46)

and
n∑

s=1

sq(i)s = n. (47)

5 Conclusion
In this document, we proposed a discussion about the coefficients of the Virial expansion. We
followed the general derivation of Kilpatrick to obtain analytical expressions for the Fermi ideal
gas. It is worth mentioning that Wilson and Rogers presented relations in the cluster expansion
theory of non-ideal gases using the formalism of umbral calculus [6].
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